Friday, May 22, 2020
The Nature of Death in Emily Dickinsons Poems Essay
Emily Dickinson once said, ââ¬Å"Dying is a wild night and a new road.â⬠Some people welcome death with open arms while others cower in fear when confronted in the arms of death. Through the use of ambiguity, metaphors, personification and paradoxes Emily Dickinson still gives readers a sense of vagueness on how she feels about dying. Emily Dickinson inventively expresses the nature of death in the poems, ââ¬Å"I felt a Funeral, in my Brain (280)â⬠, ââ¬Å"I Heard a fly Buzzââ¬âWhen I Diedââ¬â(465)ââ¬Å" and ââ¬Å"Because I could not stop for Deathââ¬â(712)â⬠. Emily Dickinson, who achieved more fame after her death, is said to be one of the greatest American poets of all time. Dickinson communicated through letters and notes and according to Amy Paulson Herstek, author ofâ⬠¦show more contentâ⬠¦Dickinsonââ¬â¢s poems provide that secret gateway to the supernatural that Ferlazzo is referring to. In the poem ââ¬Å"I felt a Funeral, in my Brain,â⬠Emily Dickinson uses symbolism to convey some sort of mental funeral that the speaker is experiencing. The funeral image that Dickinson depicts in the first line of the poem: ââ¬Å"I felt a Funeral, in my Brain,â⬠does not literally represent a funeral, but it is used to symbolism a mental breakdown and agony that the speaker is going through. By using this symbolism, the speaker is imagining the death of old ways of thought. Dickinson writes that when the funeral service was ââ¬Å"like a Drumââ¬âââ¬Å" (Dickinson 43) and that it ââ¬Å"Kept beatingââ¬âbeatingââ¬âtill I thought My Mind was going numbââ¬âââ¬Å" (43), leaving readers believing that the speaker is going mad. By depicting this image, Dickinson reveals that with the death of old thought; there is some sort of numbness or pain that is necessary to ââ¬Å"progress to a better stateâ⬠(Goldfarb 2). By repeating the beating sound two times , along with the rhyming sequence in the previous lines of the poem, Dickinson is stressing the numbness and the importance of it. Dickinson uses ambiguity to stress the difficulty of knowing and understanding certain experiences and thoughts to the reader. By being deliberately elusive, Dickinson makes the speaker out to be some sort of hero. In a critical essay of ââ¬Å"I felt a Funeral, in my Brain,â⬠Sheldon GoldfarbShow MoreRelatedEmily Dickinson: An American Poet1793 Words à |à 7 PagesEmily Dickinson is one of the most influential American authors, whose works transformed the way people view poetry and female authors. Her exceedingly complex life has proved a tremendous influence on her instrumental poetry, creating its originality and distinguishing her from other great poets of the nineteenth century. As well, her use of symbolism and imagery has continued to make her work celebrated. Although Emily Dickinson lived a private and reclusive life, full of death among many closeRead MoreSolitude Of A Poet By Emily Dickinson1545 Words à |à 7 Pagesmost recognized and widely studied poet today. Bo rn in December 10, 1886 in Amherst, Massachusetts, Emily Dickinson was one of three children to Edward Dickinson and his wife, Emily Dickinson. According to Pettinger, Dickinsonââ¬â¢s roots trace back to her Puritan ancestors from England in the 17th century, who later immigrated to America to freely exercise their religion (Pettinger, The Biography of Emily Dickinson). Dickinson was a quiet, intelligent individual, excelling in Amherst Academy, a schoolRead MoreEmily Dickinson Research Paper984 Words à |à 4 PagesMichael Salvucci Mrs. Comeau English 10 Honors Death, Pain, and the Pursuit of Peace Although Emily Dickinsonââ¬â¢s poetry is profoundly insightful, her poems have a very confinedpan of subjects and themes. Most likely due to her early life and social reclusion, Dickinsonââ¬â¢s poetry is limited to three major subjects: death, pain, and on a somewhat lighter note, nature. Dickinsonââ¬â¢s poetry is greatly influenced by her early life as she led an extre mely secluded and pessimisticlife. In her early adultRead MoreEmily Dickinson s Emily And The English Specking World Essay1744 Words à |à 7 Pages Emily Dickinson Emily Dickinson is a very well-known poet. Emily wrote many poems. She has written 1700-2000 poems (4) According to Nicolas Tredell, there was ââ¬Å"only eleven poems published during her lifetime.â⬠(4) She did not know about most of them being published. Dickinsonââ¬â¢s sister found the poems and turned them in to be published. Emily did not want her poems to be seen. Dickinson is one of the great poets. Her poems were produced by America and the English-specking world (1). Emily had aRead MoreEssay about Emily dickinson1145 Words à |à 5 Pages Emily Dickinsonââ¬â¢s poetry powerfully indicates values of society of the time. It does this through its conciseness, its simplicity and its control. Indications of societyââ¬â¢s values are seen in many of Dickinsons poems, but they are especially noticeable in ââ¬ËIt was not Deathââ¬â¢, and ââ¬ËBecause I could not stop for Deathââ¬â¢. In Dickinsonââ¬â¢s poem ââ¬ËIt was not Deathââ¬â¢, she demonstrat es how restricting and stereotyping society can be on an individual, and how society values the conformity of the whole communityRead MoreTheology Leads to Interpretation1336 Words à |à 6 PagesEmily Dickinsonââ¬â¢s extensive collection of poems on the subject of death can be better understood individually once time has been taken to view her works as whole. By viewing the works as a whole, it is possible to conclude a likely theological view point of the author and then apply this theology to the individual works in order to improve interpretation. Emily Dickinsonââ¬â¢s poem ââ¬Å"Because I could not stop for Deathâ⬠is one such poem that when viewed individually is open to a wide scope of readingsRead MoreMortailty and Eternity in Emily Dickinson Poems Essay1541 Words à |à 7 PagesEmily Dickinson is the epitome of the modern poet. Her poetry breaks from the traditional style with dashes to separate ideas. Dickinson, also, challenged the religious belief of her ti me. Growing up as a Puritan in Massachusetts, Emily Dickinson knew the bible, yet as an adult, she questioned that belief. Many of her poems seem focused on death; death of the body, death of the soul, death of the mind. Why was she so intrigued with death? The poems that embody this theme are: ââ¬Å"Success is countedRead More A Comparison of the Poetry of Emily Dickinson and Robert Frost1062 Words à |à 5 PagesThe Poetry of Emily Dickinson and Robert Frost The poetry of Emily Dickinson and Robert Frost contains similar themes and ideas. Both poets attempt to romanticize nature and both speak of death and loneliness. Although they were more than fifty years apart, these two seem to be kindred spirits, poetically speaking. Both focus on the power of nature, death, and loneliness. The main way in which these two differ is in their differing use of tone. The power of nature is a recurring themeRead MoreThe Works of Emily Dickinson726 Words à |à 3 Pages Emily Dickinsonââ¬â¢s writing reflects the Realistic period through personal themes: death, isolation, God, marriage, women in society, and love. Dickinsonââ¬â¢s writing is affected by numerous factors. Among these are her family, the Realism period, and her life experiences. Emily Dickinson herself was a sort of mystery. Emily Dickinsonââ¬â¢s background had a profound effect on her writing. Family always plays an important role in the upbringing of an individual. Her grandfather had a prominent position inRead More Emily Dickinson - Her Life and Poetry Essay627 Words à |à 3 PagesEmily Dickinson - Her Life and Poetry Emily Elizabeth Dickinson was born December 10, 1830, into an influential family in Amherst, Massachusetts. Her father helped found Amherst College, where Emily later attended between 1840 and 1846. She never married and died in the house where she was born on May 15, 1886. Emily Dickinsonââ¬â¢s reclusive life was arguably a result of her proposed bi-polar disorder. This life and disorder unduly influenced the themes of her poetry. She chose not
Sunday, May 10, 2020
Chronic Disease Rheumatoid Arthritis - 1333 Words
This paper will be addressing a chronic disease known as rheumatoid arthritis that ââ¬Å"is an autoimmune disease in which the bodyââ¬â¢s immune system ââ¬â which normally protects its health by attacking foreign substances like bacteria and viruses ââ¬â mistakenly attacks the joints. This creates inflammation that causes the tissue that lines the inside of joints (the synovium) to thicken, resulting in swelling and pain in and around the joints.â⬠(Foundation 2016) The interviewee in this paper, Robert Doe, age 68, has been diagnosed with this chronic autoimmune disease. This interview consisted of six questions in the home of Mr. Doe around his disease and the medications/substances used and what their long term effects consist of, activities of dailyâ⬠¦show more contentâ⬠¦Doeââ¬â¢s chronic disease of rheumatoid arthritis. This enhanced the interview process as the questions were relatable to the interviewee, this ultimately allowing a higher chance to g ain the information required. The questions were also formed around the papers purpose of daily living, medicine and substance intake and how these link to determinants of health. Lastly the way in which the questions were communicated and adapted strengthened the interview process by ââ¬Ëdetermining how the patient can best receive the messageââ¬â¢ (Day, Levett-Jones Kenny 2012). The communication was also heightened through the loudness of speech as Mr. Doe has cognitive impairment with hearing. It is important that when interviewing cognitive impaired interviewees that the interview is taken in a quite environment such as a home or office, that you use a firm loud voice, only ask one question at a time, and that the interviewee is given plenty of time to answer each topic and question asked. (Day, Levett-Jones Kenny 2012). This is believed why the six questions asked were appropriate and gained the information required for the papers purpose. Ethics and Codes During the interview with Mr. Doe the ââ¬ËCode of Ethics for Nurses in Australiaââ¬â¢ was adhered to by the interviewer. This was done in a variety of ways, for example ensuring that the interviewee was aware of the interview process, the topics in which would be covered as well as the privacy that would be
Wednesday, May 6, 2020
Transfer Functions Free Essays
string(141) " Summing point Takeoff point Block Transfer function \+_ The above figure shows the way the various items in block diagrams are represented\." ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ TRANSFER FUNCTIONS AND BLOCK DIAGRAMS 1. Introduction 2. Transfer Function of Linear Time-Invariant (LTI) Systems 3. We will write a custom essay sample on Transfer Functions or any similar topic only for you Order Now Block Diagrams 4. Multiple Inputs 5. Transfer Functions with MATLAB 6. Time Response Analysis with MATLAB 1. Introduction An important step in the analysis and design of control systems is the mathematical modelling of the controlled process. There are a number of mathematical representations to describe a controlled process: Differential equations: You have learned this before. Transfer function: It is defined as the ratio of the Laplace transform of the output variable to the Laplace transform of the input variable, with all zero initial conditions. Block diagram: It is used to represent all types of systems. It can be used, together with transfer functions, to describe the cause and effect relationships throughout the system. State-space-representation: You will study this in an advanced Control Systems Design course. 1. 1. Linear Time-Variant and Linear Time-Invariant Systems Definition 1: A time-variable differential equation is a differential equation with one or more of its coefficients are functions of time, t. For example, the differential equation: d 2 y( t ) t2 + y( t ) = u ( t ) dt 2 (where u and y are dependent variables) is time-variable since the term t2d2y/dt2 depends explicitly on t through the coefficient t2. An example of a time-varying system is a spacecraft system which the mass of spacecraft changes during flight due to fuel consumption. Definition 2: A time-invariant differential equation is a differential equation in which none of its coefficients depend on the independent time variable, t. For example, the differential equation: d 2 y( t ) dy( t ) m +b + y( t ) = u ( t ) 2 dt dt where the coefficients m and b are constants, is time-invariant since the equation depends only implicitly on t through the dependent variables y and u and their derivatives. 1 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Dynamic systems that are described by linear, constant-coefficient, differential equations are called linear time-invariant (LTI) systems. 2. Transfer Function of Linear Time-Invariant (LTI) Systems The transfer function of a linear, time-invariant system is defined as the ratio of the Laplace (driving function) U(s) = transform of the output (response function), Y(s) = {y(t)}, to the Laplace transform of the input {u(t)}, under the assumption that all initial conditions are zero. u(t) System differential equation y(t) Taking the Laplace transform with zero initial conditions, U(s) Transfer function: System transfer function G (s) = Y(s) Y(s) U(s) A dynamic system can be described by the following time-invariant differential equation: an d n y( t ) d n ? 1 y( t ) dy( t ) + a n ? 1 + L + a1 + a 0 y( t ) n ? 1 dt dt dt d m u(t) d m ? 1 u ( t ) du ( t ) = bm + b m ? 1 + L + b1 + b 0 u(t) m m ? 1 dt dt dt Taking the Laplace transform and considering zero initial conditions we have: (a n ) ( ) s n + a n ? 1s n ? 1 + L + a 1s + a 0 Y(s) = b m s m + b m ? 1s m ? 1 + L + b1s + b 0 U(s) The transfer function between u(t) and y(t) is given by: Y(s) b m s m + b m ? 1s m ? 1 + L + b1s + b 0 M (s) = = G (s) = U(s) N(s) a n s n + a n ? 1s n ? 1 + L + a 1s + a 0 where G(s) = M(s)/N(s) is the transfer function of the system; the roots of N(s) are called poles of the system and the roots of M(s) are called zeros of the system. By setting the denominator function to zero, we obtain what is referred to as the characteristic equation: ansn + an-1sn-1 + + a1s + a0 = 0 We shall see later that the stability of linear, SISO systems is completely governed by the roots of the characteristic equation. 2 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ A transfer function has the following properties: â⬠¢ The transfer function is defined only for a linear time-invariant system. It is not defined for nonlinear systems. The transfer function between a pair of input and output variables is the ratio of the Laplace transform of the output to the Laplace transform of the input. â⬠¢ All initial conditions of the system are set to zero. â⬠¢ The transfer function is independent of the input of the system. To derive the transfer function of a system, we use the following procedures: 1. Develop the differential equation f or the system by using the physical laws, e. g. Newtonââ¬â¢s laws and Kirchhoffââ¬â¢s laws. 2. Take the Laplace transform of the differential equation under the zero initial conditions. 3. Take the ratio of the output Y(s) to the input U(s). This ratio is the transfer function. Example: Consider the following RC circuit. 1) Find the transfer function of the network, Vo(s)/Vi(s). 2) Find the response vo(t) for a unit-step input, i. e. ?0 t 0 v i (t) = ? ?1 t ? 0 Solution: 3 R vi(t) C vo(t) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Exercise: Consider the LCR electrical network shown in the figure below. Find the transfer function G(s) = Vo(s)/Vi(s). L R i(t) vi(t) vo(t) C Exercise: Find the time response of vo(t) of the above system for R = 2. 5? , C = 0. 5F, L=0. 5H and ? 0 t 0 . v i (t) = ? ?2 t ? 0 4 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Exercise: In the mechanical system shown in the figure, m is the mass, k is the spring constant, b is the friction constant, u(t) is an external applied force and y(t) is the resulting displacement. y(t) k m u(t) b 1) Find the differential equation of the system 2) Find the transfer function between the input U(s) and the output Y(s). 5 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 3. Block Diagrams A block diagram of a system is a pictorial representation of the functions performed by each component and of the flow of signals. The block diagram gives an overview of the system. Block diagram items: Summing point Takeoff point Block Transfer function +_ The above figure shows the way the various items in block diagrams are represented. You read "Transfer Functions" in category "Essay examples" Arrows are used to represent the directions of signal flow. A summing point is where signals are algebraically added together. The takeoff point is similar to the electrical circuit takeoff point. The block is usually drawn with its transfer funciton written inside it. We will use the following terminology for block diagrams throughout this course: R(s) = reference input (command) Y(s) = output (controlled variable) U(s) = input (actuating signal) E(s) = error signal F(s) = feedback signal G(s) = forward path transfer function H(s) = feedback transfer fucntion R(s) Y(s) E(s) G(s) +_ F(s) H(s) Single block: U(s) Y(s) Y(s) = G(s)U(s) G(s) U(s) is the input to the block, Y(s) is the output of the block and G(s) is the transfer function of the block. Series connection: U(s) X(s) G1(s) Y(s) G2(s) 6 Y(s) = G1(s)G2(s)U(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Parallel connection (feed forward): G1(s) + U(s) Y(s) Y(s) = [G1(s) + G2(s)]U(s) + G2(s) Negative feedback system (closed-loop system): R(s) E(s) +_ The closed loop transfer function: Y(s) G(s) Y(s) G(s) = R(s) 1 + G(s) Exercise: Find the closed-loop transfer function for the following block diagram: R(s) Y(s) E(s) G(s) +_ F(s) H(s) 7 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) _______________________________________________________________________________ Exercise: A control system has a forward path of two elements with transfer functions K and 1/(s+1) as shown. If the feedback path has a transfer function s, what is the transfer function of the closed loop system. R(s) +_ Y(s) 1 s +1 K s Moving a summing point ahead of a block: R(s) Y(s) G(s) + R(s) Y(s) + à ± G(s) à ± F(s) 1/G(s) F(s) Y(s) = G(s)R(s) à ± F(s) Moving a summing point beyond a block: R(s) Y(s) + R(s) G(s) Y(s) G(s) à ± + à ± F(s) G(s) F(s) Y(s) = G(s)[R(s) à ± F(s)] Moving a takeoff point ahead of a block: R(s) Y(s) R(s) Y(s) G(s) G(s) Y(s) Y(s) G(s) Y(s) = G(s)R(s) 8 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Moving a takeoff point beyond a block: R(s) Y(s) R(s) Y(s) G(s) G(s) R(s) R(s) 1/G(s) Y(s) = G(s)R(s) Moving a takeoff point ahead of a summing point: R(s) Y(s) + Y(s) à ± F(s) R(s) à ± F(s) + à ± Y(s) + Y(s) Y(s) = R(s) à ± F(s) Moving a takeoff point beyond a summing point: R(s) R(s) Y(s) + Y(s) + à ± à ± F(s) à ± R(s) F(s) R(s) + Y(s) = R(s) à ± F(s) Exercise: Reduce the following block diagram and determine the transfer function. R(s) + _ + G1(s) G2(s) G3(s) _ Y(s) + + H1(s) G4(s) H2(s) 9 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ Exercise: Reduce the following block diagram and determine the transfer function. H1 + R(s) +_ + G H2 10 Y(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 4. Multiple Inputs Control systems often have more than one input. For example, there can be the input signal indicating the required value of the controlled variable and also an input or inputs due to disturbances which affect the system. The procedure to obtain the relationship between the inputs and the output for such systems is: 1. 2. 3. 4. Set all inputs except one equal to zero Determine the output signal due to this one non-zero input Repeat the above steps for each of the remaining inputs in turn The total output of the system is the algebraic sum (superposition) of the outputs due to each of the inputs. Example: Find the output Y(s) of the block diagram in the figure below. D(s) R(s) +_ G1(s) + + H(s) Solution: 11 Y(s) G2(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) _______________________________________________________________________________ Exercise: Determine the output Y(s) of the following system. D1(s) R(s) +_ G1(s) + + Y(s) G2(s) H1(s) + + D2(s) 12 H2(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 5. Transfer Functions with MATLAB A transfer function of a linear time-invariant (LTI) system can be entered into MATLAB using the command tf(num,den) where num and den are row vectors containing, respectively, the coefficients of the numerator and denominator polynomials of the transfer function. For example, the transfer function: G (s) = 3s + 1 s + 3s + 2 2 can be entered into MATLAB by typing the following on the command line: num = [3 1]; den = [1 3 2]; G = tf(num,den) The output on the MATLAB command window would be: Transfer function: 3s+1 ââ¬âââ¬âââ¬âââ¬âs^2 + 3 s + 2 Once the various transfer functions have been entered, you can combine them together using arithmetic operations such as addition and multiplication to evaluate the transfer function of a cascaded system. The following table lists the most common systems connections and the corresponding MATLAB commands to implement them. In the following, SYS refers to the transfer function of a system, i. e. SYS = Y(s)/R(s). System MATLAB command Series connection: R(s) Y(s) G1 G2 SYS = G1*G2 or SYS = series(G1,G2) Parallel connection: G1 + R(s) SYS = G1 à ± G2 or SYS = parallel(G1,à ±G2) Y(s) à ± G2 Negative feedback connection: R(s) Y(s) +_ G(s) SYS = feedback(G,H) H(s) 13 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ R(s) Y(s) +_ G1 G2 H Example: Evaluate the transfer function of the feedback system shown in the figure above using MATLAB where G1(s) = 4, G2(s) = 1/(s+2) and H(s) = 5s. Solution: Type the following in the MATLAB command line: G1 = tf([0 4],[0 1]); G2 = tf([0 1],[1 2]); H = tf([5 0],[0 1]); SYS = feedback(G1*G2,H) This produces the following output on the command window (check this result): Transfer function: 4 ââ¬âââ¬â-21 s + 2 Exercise: Compute the closed-loop transfer function of the following system using MATLAB. R(s) +_ 1 s +1 14 s+2 s+3 Y(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 6. Time Response Analysis with MATLAB After entering the transfer function of a LTI system, we can compute and plot the time response of this system due to different input stimuli in MATLAB. In particular, we will consider the step response, the impulse response, the ramp response, and responses to other simple inputs. 6. 1. Step response To plot the unit-step response of the LTI system SYS=tf(num,den) in MATLAB, we use the command step(SYS). We can also enter the row vectors of the numerator and denominator coefficients of the transfer function directly into the step function: step(num,den). Example: Plot the unit-step response of the following system in MATLAB: Y (s) 2s + 10 =2 R (s) s + 5s + 4 Solution: Step Response 2. 5 num = [0 2 10]; den = [1 5 4]; SYS = tf(num,den); step(SYS) Amplitude 2 or directly: step(num,den) 1. 5 1 MATLAB will then produce the following plot on the screen. Confirm this plot yourself. 0. 5 0 0 1 2 3 Time (sec. ) 4 5 For a step input of magnitude other than unity, for example K, simply multiply the transfer function SYS by the constant K by typing step(K*SYS). For example, to plot the response due to a step input of magnitude 5, we type step(5*SYS). Notice in the previous example that that time axis was scaled automatically by MATLAB. You can specify a different time range for evaluating the output response. This is done by first defining the required time range by typing: t = 0:0. 1:10; % Time axis from 0 sec to 10 sec in steps of 0. 1 sec and then introducing this time range in the step function as follows: step(SYS,t) % Plot the step response for the given time range, t This produces the following plot for the same example above. 15 6 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) _______________________________________________________________________________ Step Response 2. 5 Amplitude 2 1. 5 1 0. 5 0 0 2 4 6 8 10 Time (sec. ) You can also use the step function to plot the step responses of multiple LTI systems SYS1, SYS2, â⬠¦ etc. on a single figure in MATLAB by typing: step(SYS1,SYS2,â⬠¦ ) 6. 2. Impulse response The unit-impulse response of a control system SYS=tf(num,den) may be plotted in MATLAB u sing the function impulse(SYS). Example: Plot the unit-impulse response of the following system in MATLAB: Y(s) 5 = R (s) 2s + 10 Solution: Impulse Response um = [0 5]; den = [2 10]; SYS = tf(num,den); impulse(SYS) 2. 5 2 impulse(num,den) Amplitude or directly 1. 5 1 This will produce the following output on the screen. Is that what you would expect? 0. 5 0 0 0. 2 0. 4 0. 6 Time (sec. ) 16 0. 8 1 1. 2 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 6. 3. Ramp response There is no ramp command in MATLAB. To obtain the unit ramp response of the transfer function G(s): multiply G(s) by 1/s, and use the resulting function in the step command. The step command will further multiply the transfer function by 1/s to make the input 1/s2 i. e. Laplace transform of a unit-ramp input. For example, consider the system: Y(s) 1 =2 R (s) s + s + 1 With a unit-ramp input, R(s) = 1/s2, the output can be written in the form: Y(s) = 1 1 1 R (s) = 2 ? s + s +1 (s + s + 1)s s 2 1 ? ?1 =? 3 2 ?s + s + s ? s which is equivalent to multiplying by 1/s and then working out the step response. To plot the unitramp response of this system, we enter the numerator and denominator coefficients of the term in square brackets into MATLAB: num = [0 0 0 1]; en = [1 1 1 0]; and use the step command: step(num,den) The unit ramp response will be plotted by MATLAB as shown below. Step Response 12 10 Amplitude 8 6 4 2 0 0 2 4 6 Time (sec. ) 17 8 10 12 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 6. 4. Arbitrary response To obtain the time response of the LTI sys tem SYS=tf(num,den) to an arbitrary input (e. g. exponential function, sinusoidal function .. etc. ), we can use the lsim command (stands for ââ¬Ëlinear simulationââ¬â¢) as follows: lsim(SYS,r,t) or lsim(num,den,r,t) here num and den are the row vectors of the numerator and denominator coefficients of the transfer function, r is the input time function, and t is the time range over which r is defined. Example: Use MATLAB to obtain the output time response of the transfer function: Y(s) 2 = R (s) s + 3 when the input r is given by r = e-t. Solution: Start by entering the row vectors of the numerator and denominator coefficients in MATLAB: num = [0 2]; den = [1 3]; Then specify the required time range and define the input function, r, over this time: t = 0:0. 1:6; r = exp(-t); % Time range from 0 to 6 sec in steps of 0. 1 sec Input time function Enter the above information into the lsim function by typing: lsim(num,den,r,t) This would produce the following plot on the screen. Li near Simulation Results 0. 4 0. 35 Amplitude 0. 3 0. 25 0. 2 0. 15 0. 1 0. 05 0 0 1 2 3 Time (sec. ) 18 4 5 6 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ TUTORIAL PROBLEM SHEET 3 1. Find the transfer function between the input force u(t) and the output displacement y(t) for the system shown below. y(t) b1 u(t) m b2 where b1 and b2 are the frictional coefficients. For b1 = 0. 5 N-s/m, b2 = 1. 5 N-s/m, m = 10 kg and u(t) is a unit-impulse function, what is the response y(t)? Check and plot the response with MATLAB. 2. For the following circuit, find the transfer function between the output voltage across the inductor y(t), and the input voltage u(t). R u(t) L y(t) For R = 1 ? , L = 0. 1 H, and u(t) is a unit-step function, what is the response y(t)? Check and plot the result using MATLAB. 3. Find the transfer function of the electrical circuit shown below. R L u(t) y(t) C For R = 1 ? , L = 0. 5 H, C = 0. 5 F, and a unit step input u(t) with zero initial conditions, compute y(t). Sketch the time function y(t) and plot it with MATLAB. 19 ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 4. In the mechanical system shown in the figure below, m is the mass, k is the spring constant, b is the friction constant, u(t) is the external applied force and y(t) is the corresponding displacement. Find the transfer function of this system. k u(t) m For m = 1 kg, k = 1 kg/s2, b = 0. 5 kg/s, and a step input u(t) = 2 N, compute the response y(t) and plot it with MATLAB. b y(t) 5. Write down the transfer function Y(s)/R(s) of the following block diagram. R(s) Y(s) K +_ G(s) a) For G(s) = 1/(s + 10) and K = 10, determine the closed loop transfer function with MATLAB. b) For K = 1, 5, 10, and 100, plot y(t) on the same window for a unit-step input r(t) with MATLAB, respectively. Comment on the results. c) Repeat (b) with a unit-impulse input r(t). 6. Find the closed loop transfer function for the following diagram. R(s) E(s) Y(s) G(s) +_ F(s) H(s) a) For G(s) = 8/(s2 + 7s + 10) and H(s) = s+2, determine the closed loop transfer function with MATLAB. ) Plot y(t) for a unit-step input r(t) with MATLAB. 7. Determine the transfer function of the following diagram. Check your answer with MATLAB. _ R(s) +_ s s + + 1/s s 20 1/s Y(s) ECM2105 ââ¬â Control Engineering Dr Mustafa M Aziz (2010) ________________________________________________________________________________ 8. Determine the transfer function of the following diagram. R(s) +_ +_ 50 s +1 Y(s) s 2/s 1/s2 2 +_ a) Check you result with MATLAB. b) Plot y(t) for a unit-impulse input r(t) with MATLAB. 9. Determine the total output Y(s) for the following system. D(s) How to cite Transfer Functions, Essay examples
Subscribe to:
Posts (Atom)